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1. INTRODUCTION

1-9
In recent years, the free electron laser instability has been

extensively investigated with particular emphasis on applications

to intense microwave generation. For the most part, previous theoretical

analyses of this instability have been carried out either for uniform

density beams3- 6 with infinite transverse dimension, or for annular

electron beams. 7 '8 The present paper examines the influence of finite

radial geometry on the free electron laser instability for a solid

electron beam propagating in combined transverse helical wiggler and

uniform axial guide fields. The analysis is carried out within the

framework of the linearized Vlasov-Haxwell eouations, including a

determination of the optimum value of beam radius R0 for maximum

growth rate.

The present analysis is carried out for an infinitely long relativ-

istic electron beam propagating in the combined transverse wiggler and

uniform axial guide fields described by Eq. (1). Equilibrium and stability

properties are calculated for the specific choice of electron distribution

function [Eq. (5)],

0 no
fb 0 0- 6(C, - 2ybmu~bCh - 2yb iz)G(C z ,

where n0 , wb' Yb, and are positive constants, C, C1 , and Cz are

the transverse, helical, and axial invariants1 0 defined in Eqs.

(6) -(8), and the axial distribution function is normalized according

to f dCzG(Cz) = 1. Equilibrium properties are investigated in Sec. II,

and stability properties are examined in Secs. III and IV, assuming

that v/Yb -< 1, where v is Budker's parameter, Ybmc2 is the characteristic

electron energy, and m is the electron rest mass.

7



NSWC TR 81.145

$In Sec. III, making use of the linearized Vlasov-Maxwell equations,

we obtain the coupled eigenvalue equations (33), (37), (40), (45), and

(46) that describe free electron laser stability properties in

circumstances where the perturbed transverse fields can be approximated

by the vacuum waveguide fields. For short wavelength perturbations,

the axial component of the perturbed longitudinal field can be approximated

by [Eq. (49)],

-(n sj i L U ,r/'R 0o 0< r <
Z'

0 , otherwise

where J Wx is the Bessel function of the first kind of order Z,

is the s'th zero of J (B,,) = 0 and s is a constant. In
tsi s E,

Sec. IV, substituting Eq. (49) into the coupled eigenvalue equations,

we obtain dlosed algebraic dispersion relations fox Ohe transverse

electric (TE) and transverse magnetic (TH) polarizations.

Introducing the normalized dimensionless function [Eq. (59)],

( 2x)
G ,(x) = 4 ,

is 2 s' 2 2 'l2'

it is shown in Sec. IV that the coupling between the longitudinal and

transverse perturbations Is proportional to G s (aIsR /R )

for the TE mode, and to GIst(Bi+l,sRO/Rc) for the TH mode. Here

and &,+,s are the sthzeroes of J +lai+l,s) - 0 and J +l(a£+ls) 0,

respectively, R is the radius of the outer conducting vall, and the prime

denotes (d/dx)Jt(x). Assuming that the maximum of the function GLs,(x)

occurs at x - xis,, we note that the maximum instability growth rate

occurs at a value of R0/R given by R0 /Rc = x s,/a for the TE
0 0 is L+l's

mode, and by R0 Rc = xs,/ s for the TM mode. This result is

different from that obtained for a hollow electron beam.
8

8
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A detailed numerical analysis of the TE mode [Eq. (62)] and TM

mode [Eq. (63)] dispersion relations is presented in Sec. IV. Two

features are noteworthy from the numerical analysis. First, for the optimized

value of R0/Rc, the instability growth rate for the T11 mode is comparable

to that for the TE mode. Moreover, the growth rate is reduced substantially

by introducing a small amount of axial momentum spread (A/y mc ' 0.01).
b/0

9/10
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II. EOUILIBRIUM TEORY AND BASIC ASSU'PTIONS

The equilibrium configuration consists of a relativistic electron

beam propagating in the combined transverse wiggler and uniform axial

guide fields described by

B0 . -6Bcos(0 - koZ)^r + 6Bsin(o - k z)e + Be , (1)
B ~ ~ = 6cs r 0 "'08 01\Z

where B0 and 6B are constants, and k0 is the axial wavenumber of the

helical wiggler field. In Eq. (1), cylindrical polar coordinates (r,0,z)

are used, with z-axis along the propagation direction, and kr' to and

are unit vectors in the r-, 6-, and z-directions, respectively. In

the present analysis, we assume that the axial wavenumber of the helical

wiggler field is sufficiently large that

IW 'cO - < I ' (2)

where w0 = koVb, wc = eBo/ybmc is the electron cyclotron frequency,
2

R0 is the characteristic beam radius, Ybmc is the characteristic

electron energy, c is the speed of light in vacuo, V C( 2 1/2

is the mean axial velocity of the electron beam, and -e and m are the

electron charge and rest mass, respectively.

It is also assumed that

V/b< 1, (3)

where v - Nbe2/mc2 is Budker's parameter,

Nb=_ dO Jc dr r no(r, 0 - koz) , (4)Nb b0

J00

is the number of electrons per unit axial length of the beam., nb(r, 0- koz)

is the equilibrium electron density, and Rc is the radius of the conducting

wall. The inequality in Eq. (3) indicates that the beam is very tenuous,

11
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and the perturbed electromagnetic fields, to lowest order, are approximated

by the vacuum waveguide fields. Consistent with the low-density

assumption in Eq. (3), we also neglect the influence of the (weak)

equilibrium self-electric and self-magnetic fields associated with the

lack of equilibrium charge and current neutrality.
1 2

For present purposes, we assume an equilibrium distribution

function of the form
10

0 .no0

fb 
6
(C, -

2
YbmWbCh - 2 bmTL)G(Cz) (5)

where no, Wb' and T1 are positive constants, and C, Ch, and C2 are the

three single-particle constants of motion defined by1 0

2 2 2eB0
C, - pr + pe + _- (P. YbmVb)

(6)
2e6B 26
- Prcos(e - k0 z) + 2 Pasin(6 - koz)

ck0 ck0
1 e6B

h e + 0  P- YbVb) + rsin(O - koz) , (7)
k 0 0

and2
and eB0 \2 _f( eB0)

(C z ck0) z ck 0
(8)

+-2o rcos(O - k0 z) - 2e6B psin(O - k0z)
ck 0 r0 ck0 0

The axial distribution function is normalized according to

_ dCzG(C) = 1 (9)

In Eqs. (6) - (8), = (Pr, Pet P) 
) 

= is the mechanical momentum,

p8 . r(p 6 - eB0 r/2c) is the canonical angular momentum associated with

2 2 4 2 2112the axial field Bo, and ymc - (m c + c p) is the relativistic

electron energy.

12/
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In the parameter regimes of practical interest for free electron A

laser applications, the axial distribution function G(C ) is strongly

peaked about C. = YbmVb = const., with characteristic half-width

ACz -(< YbmVb . Moreover, in the present analysis, it is also assumed

that the axial motion is nonresonant with

2 2 2

k0 vz  c (10)

where v. - pz/ym is the axial velocity of a typical beam electron.

We therefore approximate Eq. (8) by
10

w 6B
C . P + c [Prcos( - koZ) - p sin( O - koZ)].zz (W 0 - c)BO0 r0

(11)

Making use of Eqs. (6), (7), and (11), it is straightforward

to show Ohat the combinal ib a C, -
2 ybmwbt:h n Eq. (5) c'n be expressed il;

C, -
2 1 h p -6B( wO - % )cos( 0 - k Z)]

bC - r b k 0r ck wO  Ic

2

+ (.0 Ybmwr + - w sine - koz) (12)

2 2
+ Ybm 2O(r, a - koz)

where 0 koVb' c eBo/ybmC, and the effective potential eo(r, 8 - koz)

is defined by

(r, - koZ) 2 (w - 2)2 + 2 wwb c - wc r 6B sin(O k Z)
0 ~ ~~ ~ ~ ~ k0  w WO-W _B0 0

2 W B 2(13)

a O - i c _ 2 + 2 (c w bZ ybmb ) 320 B3 O 
) b  b

Tm V , b z b-

As a simple example, we consider an axial distribution function

in which all electrons have a same value of Cz, i.e.,

13
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G(C) - 6(C - YbmVb) • (14)

After some straightforward algebraic manipulation that makes use of

Eqs. (5), (12), and (14), it can readily be shown that the lowest-

order (azimuthally symmetric) electron density profile described by

Eqs. (5) and (14) can be approximated by
10

fn0 , 0,r < 0
n (r) n 0 (15)

b0, R0 <r <R c .

where the mean radius R0 is defined by

Tj. +( " 0  
"b )'c ( BV%"0

b- ~(o "c)Wc2 B) b

R2 0 (16)
(Wb~c Wb)

and use has been made of Eq. (2). Additional general equilibrium

properties assuc:idred with tile, disLribution function in Eq. (5),

including helical distortions of the beam equilibrium for finite 6B/Bo,

are discussed in Ref. 10.

14
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III. LINEARIZED VLASOV-MtAXWELL EQUATIONS FOR A TENUOUS BEAM

In this section, we make use of the linearized Vlasov-Naxwell

equations to investigate the free electron laser stability properties

of a relativistic solid electron beam described by the equilibrium

distribution function in Eq. (5). We adopt a normal-mode approach in

which all perturbations are assumed to vary with time and space

according to

= 0( (r)exp(il[1 + (k + nk0 )z - wt]) , (17)

where Imw > 0. Here, w is the complex eigenfrequency, k+ nk 0 is the

axial wavenumber, and 2 and n are integers. Moreover, it is also assumed

that the perturbations are close to resonance with

1w - (k + nk0 )V bl " wO' 'c (18)

where w0 = k0Vb and w . eB0/YbmC"

The Maxwell equations for the perturbed electric and magnetic field

amplitudes can be expressed as

V =x (4s/c)J(k) -i(w/c)E(x)
i~w/c)~x) ,(19)

where

= -e J d3
p v f . (20)

is the perturbed current density. In Eq. (20),

(x,
0

) e dT exp(-iwt) E(x') + f 0'21
5(21)

15
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is the perturbed distribution function, i - t' - t, and the particle

trajectories '(t') and k'(t') satisfy dk'/dt' - ' and dk'/dt' - -eX' x 0O/c,

with "initial" conditions k'(t' - t) - k and v'(t' .t) .

Within the context of Eqs. (3) and (18), the perturbed distribution

function in Eq. (21) can be approximated by

- ie L dT exp(-iw){2 (ymiw(v'

(22)

-z ap 2- b az ap b

where ' - (I + z2/m 2 c2 )/2, and use has been made of Eq. (19). To lowest

order, the axial motion of an electron is free-streaming with1
0

Z' = z +- Wt - t)0 (23)
Ym

Moreover, within the context of Eq. (18), on the right-hand side of

Eq. (22) we retain contributions to v' and v' in the orbit integral of

the form
8

V' c 6Bcos(6- kz - kovT), (24)
r z  00 c BO0 0

and

v,= -vz c 6B sin(0 - k0 z - kOvzT) . (25)
S zwO wc BO

Finally, since the oscillatory modulation of the radial and azimuthal

orbits is small amplitude [Eq. (2)], we approximate

r' = r , O' = O , (26)

in the arguments of the perturbation amplitudes on the right-hand side of

Eq. (22).

16
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Substituting Eqs. (23) - (26) into Eq. (22), we obtain the perturbed

distribution function

" -(n)

fb( )  f f expi[1e + (k + nko)z] 1b,n

ec Iexp{i[te + (k + nko)z]} E(n) e6B 0

E l r , l ( r ) + 8n ,l _( r ) ] + A n l E r ( ) - i E +(n -1 )

(27)

waere the function An' (k'wk) is defined by

f0  f0
An, (,wk) = 2[ymw - (k + n'k0)P] --- + ( + n'0) , (28)

p P.P z

and 5z = vz/c. In Eq. (27), the term proportional to An is the

longitudinal portion of the perturbed distribution function.

Similarly, the terms proportional to X+l and A- in Eq. (27) are the
nl n-l

transverse electromagnetic portions of the perturbed distribution function.

Consistent with Eq. (18), the eigenfrequency w can be approximated

by w = (k + nko)Vb. We therefore approximate w 2/c2 (k + nk0 + k0 )
2 by

2 (k + nko) 2 2
2/c2 - (k + nk0 + ko)

2  1 2 + 2k0 (k + nk0 ) + k < 0

b (29)

for k + nk0 > 0. Evidently, Eq. (29) indicates that the n + I mode in

Eq. (27) is a non-propagating wave in a vacuum waveguide. Without loss

of generality, for a tenuous beam, we therefore assume

i(n~l) E(n+l)(r) = 0 (30)r,t-lr e ,i-I (0

in the subsequent analysis. Making use of Eq. (30), f b (,) in Eq. (27)

can then be expressed as

17
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expfite + (k + nk0 )Z]) En)

f )  )v U 0 zf , I (r)
(31)

+ AA[ -E(n-1) (r
n-1 r,t+l - ,i+l ,

where the dimensionless parameter A is defined by

e6B W0  (32)
2ybmc2 k0  0 -c

and use has been made of the approximation y Yb' which is consistent

with Eq. (18).

From Poisson's equation, V •( ) = 4rp(x), and the

Maxwell equation (19), we obtain the differential equation,

2 2 2]j~n) 4iri(k + ink 0 ) (n
V 2

+ - (k + nk0 )].(nz ,L (r) 4 2 Pi (r) (33)
c Yb

for the axial (loogiudinal) component of the perturbed elecLric

i(n). t( 3 i(n)field. - ( n  In Eq. (33), pn) (r) = -efd pk is the perturbed chargeEz, t £"

2 - l 1(/a)r/ 2 2, (n)
density, Va  r (a/r)(ra/ r) - 2 /r and use has been made of J 2 r =

VbP1 (r). In the tenuous beam limit [Eq. (3)], the transverse field
-(n-l)"r

components t1 +l(r) in Eq. (31) can be approximated by the vacuum

waveguide fields. 8  In this context, the present stability analysis

utilizes the vacuum transverse electric (TE) and transverse magnetic

(TM) waveguide modes as a convenient basis to represent the general
(n-l) 1

electromagnetic field perturbation Ej,£+l(r), which is determined from

[w 2 .2 -(n-1)
- (k + ink0 - k0 ) J 4+l()

,/ (34)

Making use of Eqs. (19) and (34), and neglecting the perturbed

current density, the vacuum waveguide fields can be expressed as

18
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zJ+l(r) - b1+ls'i+1 (a t+l,sr/R ,

for the TE made, and

i(n-l).
z'1+i(r) 1€+lsJs+1(8 i+l,sr/R),

(36)
-(n-l) n- 1 () (k + nk0 - ko)R(
r, i+I 6,t l+ r1+i,s F£+l's £ (B +,sr/RC)

for the M.1 mode. In Eqs. (35) and (36), b,+,, and are constants,

J,(x) is the Bessel function of first kind of order ', and

and 6 £+is are the sth roots of j';+(a+ s) = 0 and J +(8 +l,s) = 0,

respectively. Here the prime (') denote. J[1 (x) = (d/dx)ji+l(x).

Aftex -ooc straightforwax, dlgebrai, uanilipulation of Eqs. (19), (35), and

(36), it can be shown that

(2 2
- (k + nk0 - k a)

2  
1+l,s b S2 2  

1+lRs +i( +Rcc
(37)

41T I ,r (n-1)() _ ( +,+1(n ) }
= - r "r3 (n)r i(f + 1)jr,k +l(r)l

for the TE mode, and

2 ~ 2r
22 - 2 ____ 1+1's)

(k + nk - k 0  r2' v 1 i ~ ( c

c 25 ( o0  o0 R~ 2 i' kl
c Rc c

(38)
-^(n-1)r w i(n-l)

=47ri ((k + nko - k (n-Ll) (r) - 2 . Z' I
c

for the TM mode. Moreover, making use of the continuity equation,

(n-) (k + k )j(n-l) 1 a jr(n-1) i(l + 1) -(n-l)+ 0 0 z,1+1 r r r,t+l1+ r O,t+l

(39)

19
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(n-i1) (n-i)the approximation (r) V I (r) [consistent with Eq. (3)],theappoxiatin z,t+lt~ =b +l r

and approximating k + nk0 = k0 /(0 - Vb/c) on the right-hand side of

Eq. (38), we find that Eq. (38) can be expressed as

(k + nk0 - ko) 2  
E k )~s

C20P. j L~~ ~(.CC (40)

4_ a (n-i) (n-i) 14-rc 3[rj -r,11(r)] + i(k+l)J ,t+l(r)

for the TM mode.

For convenience of notation in the subsequent analysis, we intro-

duce the effective susceptibility,

2 3 'n,(k,w,k)

n,n '(  =4e2d w - (k + nk0 )vz

'loreover, to simplify the present analysis, we also assume that the

beam rotation ib slow with

b< b e' 0" (42)

Within the context of Eq. (42), we can show from Eq. (12) that the

equilibrium distribution function is an even function of

Pr -
2
ybmcAcos(O - koz) (43)

and

Pe 
+ 

2 bmCAsin(8 - koz) , (44)

for the beam rotations satisfying wb << wc, w0 . Making use of

Eqs. (31), (41), and (43), the perturbed charge and current densities

are given by

^(n-1) c2 (n-)n)J (r) 4-= G (,k,r) = iJ (r) =icAp (r) (45)
e'1+1 4iw I rjt+I

where the function G (a,kr) is defined by

20
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G(N,k, r) nn 8zi2 E ' r

(46)

+ AX W-(nl - (- (r)]
n,n-lr,1+1 6 ,L+1  •

Equations (33), (37), and (40), when corbined with Eq. (45), constitute

one of the principal results of this paper and can be used to investigate

stability properties for a broad range of system parameters. Moreover,

in limiting cases, the dispersion relation for the free electron laser

instability can be obtained in a closed form (Sec. IV).

I
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IV. FREE ELECTRON LASER STABILITY PROPEUT1rS

In this section, simplified expressions are obtained for the longi-

tudinal perturbations in Eq. (33),and the results are used to derive the

dispersion relation for several values of azimuthal harmonic number E.

The present analysis assumes short wavelength perturbations with

Iq 2 = 1(k + nk0 )
w2 - 2/c2 > 2/R 2 (47)

Moreover, for w = (k + nko)Vb and k + nk0  k0 /(1 - Vb/c), the inequality

in Eq. (47) can be expressed in the equivalent form,

2222

(1 + Vb/c) YbkoR0 >2 1 , (48)

which is readily satisfied in the parameter regimes of present experimental

interest. As shown in Appendix A, for short waveiength perturbations

satisfying Eq. (48), the axial component of the perturbed electric field

i(n) (r) in Eq. (33) can be approximated byz,£.Z'I
(n)(r )  J ,s,J (a s,r/Ro) 0 < r < R0 ,
z 0 , otherwise

In Eq. (49), 8 Is, is t0e s'th root of J (G,,) = 0, and k,s' is a

constant.

Substituting Eqs. (35) and (49) into Eq. (46), multiplying Eqs.

(33) and (37) by rJ (6 r,r/) and rJ (u r/P ), respectively,

and integrating from r - 0 to r - R c we obtain two homogeneous equations

relating the perturbation amplitudes and b +l,s. For the TE

mode polarization, these are 2!
Cdr r G(R0 - r) (1 X~ + q 2 + ets j2(ts

0y (50)

23
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(k + nko)Rc P c X 1 r )dr P(fsc(
Y 2 b+i s  dr r nn-1 i R Csr )and Yb t+ls 0 RR

2 - (k n 0  02 - 2 - + rbt+l' C dr r - ( + nk0  R
2  + Xnn -iJJ +i( 11.
c (51)

R e~ " isr a 'a'r(+') A f dr r4(R 0 3r)xnn) ' .,( Qf+ls

(k + nk0)R0 0,s' -

whiere #(x) is the ]leavisjde step function defined by

OW (52)
0, otherwise

Similarly, for the TH mode polarization, we obtain
r ~2r

;,fC dr r *(R0  + r2 + Z'' 2( E+ +

U (53)

(k I- nko)R f~ c d L )jii-s S=~ ~ -i2CC~'J dr r Xn nit\ i XO It
Ni+l'sf n,n-l R PU t+l,sc

and 2

C +1,s dr* r(~ (k + nk 0  L k0 )
2  2 A2 )nnI+( -

Cc (54)

8 ' * R c ~ '

(k + nko)R0'AtS'Jo dr ____ _( 0_J+ I-  )
X .t+1' sr

t+l ( P

where us- has been made of w = (k + nk )V and (k + nk k /(I - V)/C)-

In the present analysis, it is assumed that the axial distribution

function has the form

G(C )=_1(55)
z )  = (CZ - fbmVb) 2 + A2.

where A is the characteristic spread in Cz about the mean value Cz = lbmVb*
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We further assume that the characteristic spread L is small in comparison

with ybmVb. Substituting Eqs. (5) and (55) into Eqs. (28) and (41),

we obtain the approximate expression
W2 _ (k + nk)(k + ) 2

- -2 0 ~r < R
S R2 [w - (k + nk0)Vb + ilk + nkO L/Y bm ] -- ( 0

nn 0 9 RO < r < Rc  (6

In obtaining Eq. (56), use has been made of La. (18). Making use of the

definition of Budker's parameter in Eqs. (3) and (4), the term 4v/ybR 2

in Eq. (56) can also be expressed as 
4 v/RbR = w2 /c2  where w

2  =
pb' pb

4n 0 e 2/bm is the plasma frequency-squared.

The condition for a nontrivial solution to Eqs. (50) and (51)

is that the determinant of the coefficients and bt+ls be equal

to zero. After some algebraic manipulation, we find that the TE mode

dispersion relation can be expressed as

Jk + nk j Al2  2 2
w (k + nko)Vb + i - (k + nk- 2 -

Ybm J C R

x w - (k + nko)Vb + 1 0  4 v
0 b b

m  
y 3Ro2

4A2 ko(k + nk0 - k 0) _ E ,_ _
+ s 0

Yb Rc Pk -
s 

( R ){ b2

SsR + ,i k + nko .y
Sls - (k + nk)v

C Yb
m

vc 2H + R0(s3 R- 2 1ss' 'R57
bR0

where the coupling coefficient_ (fss,(ai+l,sRO /Rc) is defined b

ss() +1s-,f (58)Q~ss(x ) "tl&Is2 -U( + 1)2 J-+l(at+l~s)

and the functions G s,(x) and H ls,(x) are defined by
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2
C .(x) 46I~ 2 2 2 (59)

is 4s (x 2-2 ,t)2
and J 2(X) - CJJ+(x)

11 ss , x + G , (x) (60)

In Eq. (57), the subscript s and s' represent the radial mode numbers

of the transverse and longitudinal perturbations, respectively.

For small wiggler amplitude ( A i), we investigate free electron

laser stability properties for w and k + nkO near the simultaneous
zeros of the transverse dispersion relation, - (k + nk 0 - k 22

2 2 2
+lsc 2/R 0, and the longitudinal dispersion relation

I k + nkl~ I 2 c2
-(k + nko)V + 1 = 0. (61)

0k k)bi 3 y3 R2
Ybm YbRo

In this regard, making use of Eq. (61), the TE mode dispersion relation

in Eq. (57) can be approximated by

2 a Ik n. JJ

- (k + k 2 -j1+** w - (k + nk)Vb + i 3

4 2 4 k(k + nk 0 -k)  Q S

ye 3R2y R2  0 2  Z cb01 bc c (62)

In a similar manner, from Eqs. (53) and (54), we obtain the

approximate T1 mode dispersion relation,

2 2 1k + nk0 IA
2

2 - (k + nk0 - 0 - R2  i4w - (k + nkO)Vb + i 3

2 2 0 B2 0R 2 (63)

4 v 3 2] - -- M 2 k 0(k + nk 0  k 0) 2 less' C21+-S-a~'

vcsR0/Rc
) 

l sJQ deined 0y

where the TM mode coupling coefficient Q s (g R /R is defined by
ISS' 1+l's 0 c

M 2Q ,(x) 2 (x)/j (s ) (64)Qss La G1'X) +2(L+1,s)

and the function G ,(x) is defir.ed in Eq. (59).

26



NSWC TR 81-145

Figure 1 shows plots of G s,(x) versus x obtained from Eq. (59)

for (a) B Is, = B0, I and (b) 0 k s , = a 1, 3  Except in the case

b = s ,1' the plots of C is,(x) for arbitrary 8 ,s , are similar

to those for as' 81,3 in Fig. 1(b). As shown in Fig. 1(b), the

quantities G%, G Cs,(X ) and xis, denote the maximum value of
is is

G,(x) and the corresponding value of x for a specified e . For

example, in Fig. 1, (xs,, s = (0, 0.69) for B6,= 1 and
isis ,

(X0s, , G S) = (9.8, 0.064) for , 6 Shown in Fig. 2 are
is i', l,3*

plots of (a) x£ , and (b) the corresponding values ofGs =

Gis, (Xj ) for several different values of the azimuthal and

radial mode numbers i and s'. It is evident from Fig. 2(b) that

GO., decreases rapidly with increasing values of the mode numbers X

and s'. Moreover, we note from Fig. 2 (a) that xfs, can be approximated by

X~s' = , s' 1 . (65)

In this regard, for s' I, CO, can be approximated by

C' = G '0 2+(6 S,), s 1. (66)
t is 1.s k+l L,s

Shown in Fig. 3 are plots of (a) Q ,/C , for the TE mode

and (b) Q ,/G , for the TM mode obtained from Eqs. (58) and (64)
iss' Is

respectively. Note that the curves In Fig. 3 are inidependent of the

Elongitudinal radial mode number s'. Evidently, the values of Q ss,/G s,
M G

and Q M ,/G increase with increasing values of azimuthal and
iss, is'

transverse radial mode numbers, £ and s. After careful examination

of Eqs. (58) and (64), we find that the maximum coupling between the

transverse and longitudinal modes occurs for a value of R0 /Rc given by
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R /R s z,1/c=+Is , TE mode ,
ROIR c " s L~ (67)

x f1+8+, s , V mode

Equation (67) is valid only when x~s, ! a+1,s for the TE mode, and

xs, ' B+ for the TM mode. For xi, > a+l s  (TE), or xL, •> +1,s

(TM), the maximum coupling occurs for R0 /Rc = 1. The maximum coupling

coefficients corresponding to Eq. (67) can be determined from Figs. 2(b)

and 3. For example, for (i,s,s') - (3,2,1), we determine that the

maximum coupling coefficient and the corresponding ratio R0 /Rc, are

given by (QE RO/R) = (1.607, 0.625) for the TE mode, and (Q ss R0/Rc)given by (QLs'

(1.83, 0.52) for the TM mode.

It is instructive to examine the present results for perturbations

with the lowest mode numbers, i.e., (i,s,s') - (0,1,1), particularly

fnr a beam-filled waveguide with R./R c = 1. In this limit, from Fig. l(a),

we obtain G s,(al,1 - 0.4 for the TE mode, and Gs,(i,) 0.045 mode.

We therefore conclude that the TE mode polarization is the most unstable.

Multiplying G,(u) = 0.4 by Q ,/Gs, 4.2 in Fig. 3(a), the
1,1 iss is

coupling coefficient is given by Q0E1- 1.7. Assuming zero axial

2 2momentum spread (A - 0) and short axial wavelengths (k0Rc >> I),

the TE mode dispersion relation in Eq. (62) can be approximated by

2
2 nO)b 2  3 2 2 k 2

_.)- (k+ - 2  w - (k + nk )V 2 3 .A o
c p

(68)

for the (t,s,s') = (0,1,1) perturbation and R /Rc 1. Equation (68)
0c

is similar in form to the result obtained by Davidson and Uhm 3 for

a uniform density beam with infinite cross section. In particular,

the constant numerical factor on the right-hand side of Eq. (68) is

equal to 3.4, whereas in Ref. 3 the constant numerical factor is equal to 8.

28



NSWC TR 81-145

Finally, we have investigated detailed stability properties

by solving the dispersion relations in Eqs. (62) and (63) numerically

for a broad range of system parameters. Defining the normalized

Doppler-shifted eigenfrequency by

- [w - (k + nko)Vb]/k0c , (69)

we calculate the nurmalized growth rate 0, lm. 2 from Eqs. (62) and

(63). Shown in Fig. 4 are plots of the normalized growth rate 0i

versus (k + nk0 )/k0 for (i,s,s') = (3,2,1), k0 Rc = 10, Yb = 10, V/yb =

0.02, and A2 = 0.01, with (a) R0/'Rc = x31 / 4,2 for the TE mode, and

(b) R0/Rc = x3 1/B4, 2 for the Tn mode. For these optimized choices of

Ro/Rc, the instability growth rate for the 11-! modeis comparable to

that for the TE mode. Moreover, the growth rate is reduced substantially

by introducing a small amount of axial momentum spread (/Ybmnc 0 0.01).

We conclude this section by pointing out two areas in which the

analysis can be extended. First, the restriction to very short wave-

length perturbations [Eq. (48)] can be removed in a relatively straight-

forward manner. Second, paralleling the self-consistent theoretical

8
formalism developed in previous studies, the stability analysis can

also be carried out without making the approximation that the transverse

perturbations are represented by the vacuum waveguide fields.
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V. CONCLLSIONS

In this paper, we have examined the free electron laser instability

for a solid relativistic electron beam propagating in the cowbined

transverse wiggler and uniform axial guide field given in Eq. (1).

The analysis was carried out within the framework of the linearized

Vlasov-Maxwell equations. The equilibrium (Sec. II) and stability (Secs.

III and IV) properties were investigated in detail for tne choice of

distribution function in which all electrons have the same value of

the linear combination of transverse and helical invariants, C, - 2 ybmWbCh,

and a Lorentzian distribution in the axial invariant C [Eqs. (5) and

(18)). One of the most important conclusions of this analysis is that

the maximum instability growth rate for a solid electron beam is comparable

t, L.hdt of .i hollow beam ,,it, .i,, ,lax pcraimters. 1.mreover, it is also

found that the maximum growth rate occurs at a value of Ro/R. corresponding

to Ro/Rc = x s, /a +l s for TE mode perturbations, and R0 /Rc = x s,/6 +l's
for TM mode perturbations. For these optimized values of R0/Rc, the

instability growth rate for the TI mode is comparable to that for the TE

mode. Moreover, the growth rate is substantially reduced by introducing

a small amount of axial momentum spread (A/Ybmc 0.01).

ACKNOILEDGM4TS

This research was supported in part by Defense Advance Research

Project Agency (DOD) under ARPA Order No. 3718, Amendment No. 12, in

part by the Independent Research Fund at the Naval Surface Ueapons

Center, and in part by the Office of Naval Research.

31/32



NSWC TR 81-145 1

0.6 -(a) 91, =,80', 2 .4O05

0.4_ .J~ ............... *....

0.2-

0 a1, 2.5 Rli5
.1 x
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(a) (b)
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FIGURE 2 PLOTS OF (a) x2s, AND (b) THE CORRESPONDING Gts, = Ges, (xQs,) FOR SEVERAL VALUES
OF AZIMUTHAL AND RAIDAL MODE NUMBERS, k AND S'.
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Gt 5a A A~ 0 Ge5  A A A 0 0 X x

A 0 90 x~ *
20-0 0 x 20-0 x x0

x x x *
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FIGRE PLTS Qsss/GQs' AND (b) O~ss/GQs'
EOS. (58) AND (64) FOR SEVERAL VALUES OF R AND S.
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0.015
(o) TE mode X =0.02,A =0.01

'Y"b
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i6 =0.005
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0.005 A

mc MC 0.02

190 210 230
(k+nko)/k o

FIGURE 4(a) PLOTS OF NORMALIZED GRWTH RATE Ei VERSUS (k + nk0 )/k0 FOR (,s,s') = (3,2,1), 7 b 10,

P/ b 0.02, AND A2 = 0.01, WITH (a) RO/Rc " x3 1 /c4,2 FOR THE TE MODE.
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0.015
(b) TM mode,,-L =0.02 A2 =0.01

Ro -X31

Rc /p4,2
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FIGURE 4(b) Ro/RC = x3 1 /04,2 FOR THE TM MODE.
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APPENDIX A

LONGITUDINAL PERTURBATIONS FOR THE FREE ELECTRON LASER lN(CTART1.TTY

In this Appendix, we investigate properties of the longitudinal

perturbations about an electron beam propagating through a cylindrical

waveguide with radius R . In the present analysis, it is assumed thatc

the perturbations have short wavelength with

Iq n = I( + nk0 ) - /Ic2  >, l/R2 (A.1)

which can also be expressed as

qnR0 = (1 + Vb/c) "ybkoR0 >> 1 , (A.2)

for the frequencies of interest for free electron laser applications.

Equation (A.2) is easily satisfied in parameter regimes of present

experimental interest. In the limit of a small wiggler amplitude (A -. 0),

we obtain the longitudinal eigenvalue equation.

a ra I_
2  

q 2 E_(n) (r)(rrr -r -2 -n) Z'

r

( I 2 2~ 0  - r ) 
( A .3 )

°pb /Y b)q n z,t (r I 0 r)

(w - (k + nko)Vb + ilk + nkol/v3m2'

from Eqs. (33), (45), (46), and (56). In Eq. (A.3), C(x) is the Heaviside

step function defined in Eq. (52), and w = 4vc 2 / 2 Is the plasma-Pb /-bRO i h lsa

frequency-squared.

For notational simplicity, we define

60 (r) sE Z1(r). A)

12
Inside the electron beam (0 < r < R0 ), Eq. (A.3) can be expressed as

A-I
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( -L r r 2- + 6$ t (r) 0 0 _5 r < P0 , (A.5)

r

where

2 2
T"2 2 qn b (A. 6)[,n - (k + nko)Vb + Iik + nk3O2I b M]

Outside the electron beam (R0 e r <R C), Eq. (A.3) reduces to the free-

space elgenvalue equation

r 7 - -2 - q)6t(r) = 0 R0 < r < R . (A.7)
r Dr ~r 2 n 0cr

The solution to Eq. (A.5) that remains finite at r = 0 is

6£' (r) J (TR )  0 < r < R0  (A.8)6in~r I. (TR

where J I(x) is the Bessel function of the first kind of order R, and

2 2
;is a constant. Noting a R' >I~ in Eq. (A.2), ,e can express theno 0

solution to Eq. (A.7) as

6ito(r) - C[I (qr)K 9 (qR) - K (qnr)ll(qnRc)], RO < r < Rc,(A.9)

where I, and K are modified Bessel functions of order 1, and C is a

constant.

The boundary conditions on 60 (r) at the surface of the electron

beam are given by

o [ rR 0  (A.10)
in r-R out

and

[ t r)6$n]r - [( W 0r)6ojt]r=R 0 , (A.11)
inir=R. 0 'id-

from Eq. (A.3). Substituting Eqs. (A.8) and (A.9) into Eqs. (A.1O) and

(A.11) gives

A-2- i
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J , (TR0 )
TO J£(TRo) = (q

(A. 12)
Ik(qnRo)K,(qnRr) - I,(qnRc)IZ(q Ro)

qn R0 I(qnR0)KI(qnRc I£ (qn .c)K(qnRO

where the "prime" notation denotes derivative with respect to the complete
argument of the Bessel function, e.g., J(TR) = [dJ (x)/dx]T. The

0 1 ~x-TR0 '
expression for the longitudinal wave admittance h(qn) in Eq. (A.12)

can be simplified in several limiting cases, including short wavelength

perturbations with qnRo2 >> 1. In this case, h(q) can be approximated by

h(q) = -qnR 0cothqn(Rc - R0 ) , (A.13)

and Eq. (A.12) reduces to

J (TR0 )

-TR 0 J (TR0) qR 0cothq(R c - R0 )  (A.14)
.~0

Evidently, the right-hand side of Eq.(A.14)is a very large positive

number, and the lovest-order longitudinal dispersion relation (for A - 0)

can be approximated by

J (TRo) = 0 , (A.15)

where T is defined in Eq. (A.6). It follows from Eq. (A.15) that

2 2 , s' = 1, 2 (A.16)

where aL, is the s'th zero of J (x) = 0. In this regard, Eqs. (A.8)

and (A.9) can be approximated by

OR si U s 0r/Ro) ,
6 r= r0 (A.17)

0, otherwise ,

where * , is a constant. Substituting Eq. (A.6) Into Eq. (A.16)

A-3
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and making use of Eq. (A.2), we obtain the longitudinal dispersion relation,

( k + nkOIA wb
w-(k + nk 0 )v b +1 - 2 (A.18)

Yb mL Y

where the term proportional to 13 has been neglected.

A-4
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